Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.241
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1007-1016, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621908

RESUMO

Chondrocytes are unique resident cells in the articular cartilage, and the pathological changes of them can lead to the occurrence of osteoarthritis(OA). Ligusticum cycloprolactam(LIGc) are derivatives of Z-ligustilide(LIG), a pharmacodynamic marker of Angelica sinensis, which has various biological functions such as anti-inflammation and inhibition of cell apoptosis. However, its protective effect on chondrocytes in the case of OA and the underlying mechanism remain unclear. This study conducted in vitro experiments to explore the molecular mechanism of LIGc in protecting chondrocytes from OA. The inflammation model of rat OA chondrocyte model was established by using interleukin-1ß(IL-1ß) to induce. LIGc alone and combined with glycyrrhizic acid(GA), a blocker of the high mobility group box-1 protein(HMGB1)/Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signaling pathway, were used to intervene in the model, and the therapeutic effects were systematically evaluated. The viability of chondrocytes treated with different concentrations of LIGc was measured by the cell counting kit-8(CCK-8), and the optimal LIGc concentration was screened out. Annexin V-FITC/PI apoptosis detection kit was employed to examine the apoptosis of chondrocytes in each group. The enzyme-linked immunosorbent assay(ELISA) was employed to measure the expression of cyclooxygenase-2(COX-2), prostaglandin-2(PGE2), and tumor necrosis factor-alpha(TNF-α) in the supernatant of chondrocytes in each group. Western blot was employed to determine the protein levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), caspase-3, HMGB1, TLR4, and NF-κB p65. The mRNA levels of HMGB1, TLR4, NF-κB p65, and myeloid differentiation factor 88(MyD88) in chondrocytes were determined by real-time fluorescent quantitative PCR(RT-qPCR). The safe concentration range of LIGc on chondrocytes was determined by CCK-8, and then the optimal concentration of LIGc for exerting the effect was clarified. Under the intervention of IL-1ß, the rat chondrocyte model of OA was successfully established. The modeled chondrocytes showed increased apoptosis rate, promoted expression of COX-2, PGE2, and TNF-α, up-regulated protein levels of Bax, caspase-3, HMGB1, TLR4, and NF-κB p65 and mRNA levels of HMGB1, TLR4, NF-κB p65, and MyD88, and down-regulated protein level of Bcl-2. However, LIGc reversed the IL-1ß-induced changes of the above factors. Moreover, LIGc combined with GA showed more significant reversal effect than LIGc alone. These fin-dings indicate that LIGc extracted and derived from the traditional Chinese medicine A. sinensis can inhibit the inflammatory response of chondrocytes and reduce the apoptosis of chondrocytes, and this effect may be related to the HMGB1/TLR4/NF-κB signaling pathway. The pharmacological effect of LIGc on protecting chondrocytes has potential value in delaying the progression of OA and improving the clinical symptoms of patients, and deserves further study.


Assuntos
Proteína HMGB1 , Ligusticum , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Condrócitos , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Dinoprostona , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Apoptose , RNA Mensageiro/metabolismo
2.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561502

RESUMO

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastrite/patologia , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 515-522, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597443

RESUMO

OBJECTIVE: To explore the inhibitory effect of saikosonin a (SSa) on pentylenetetrazol-induced acute epilepsy seizures in a mouse model of depression and explore the mechanism mediating this effect. METHODS: Male C57BL/6J mouse models of depression was established by oral administration of corticosterone via drinking water for 3 weeks, and acute epileptic seizures were induced by intraperitoneal injection of a single dose of pentylenetetrazole. The effect of intraperitoneal injection of SSa prior to the treatment on depressive symptoms and epileptic seizures were assessed using behavioral tests, epileptic seizure grading and hippocampal morphology observation. ELISA was used to detect blood corticosterone levels of the mice, and RTqPCR was performed to detect the pro- and anti-inflammatory factors. Microglia activation in the mice was observed using immunofluorescence staining. RESULTS: The mouse model of corticosterone-induced depression showed body weight loss and obvious depressive behaviors with significantly increased serum corticosterone level (all P < 0.05). Compared with those with pentylenetetrazole-induced epilepsy alone, the epileptic mice with comorbid depression showed significantly shorter latency of epileptic seizures, increased number, grade and duration of of seizures, reduced Nissl bodies in hippocampal CA1 and CA3 neurons, increased number of Iba1-positive cells, and significantly enhanced hippocampal expressions of IL-1ß, IL-10, TNF-α and IFN-γ. Pretreatment of the epileptic mice with SSa significantly prolonged the latency of epileptic seizures, reduced the number, duration, and severity of seizures, increased the number of Nissl bodies, decreased the number of Iba1-positive cells, and reduced the expression levels of IL-1ß, IL-10, TNF-α, and IFN-γ in the hippocampus (P < 0.05). CONCLUSION: Depressive state aggravates epileptic seizures, increases microglia activation, and elevates inflammation levels. SSA treatment can alleviate acute epileptic seizures in mouse models of depression possibly by suppressing microglia activation-mediated inflammation.


Assuntos
Epilepsia , Ácido Oleanólico/análogos & derivados , Pentilenotetrazol , Saponinas , Masculino , Camundongos , Animais , Pentilenotetrazol/efeitos adversos , Interleucina-10 , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Depressão , Corticosterona/metabolismo , Corticosterona/farmacologia , Corticosterona/uso terapêutico , Camundongos Endogâmicos C57BL , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Modelos Animais de Doenças
4.
PLoS One ; 19(4): e0298575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593124

RESUMO

Osteoarthritis (OA) is a widespread chronic, progressive, degenerative joint disease that causes pain and disability. Current treatments for OA have limited effectiveness and new biomarkers need to be identified. Bioinformatics analysis was conducted to explore differentially expressed genes and DNA repair/recombination protein 54 L (RAD54L) was selected. We firstly overexpressed RAD54L in interleukin-1ß (IL-1ß)-induced human articular chondrocytes or in OA rats to investigate its effect on OA. Chondrocyte viability and apoptotic rate were measured by Cell Counting Kit-8 and flow cytometry, respectively. Then we evaluated OA severity in vivo by Hematoxylin-eosin staining and Osteoarthritis Research Society International standards. The expression of inflammatory mediators was tested by enzyme-linked immunosorbent assay. Finally, western blot was performed to determine the relative expression level of hypoxia-inducible factors 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Overexpression of RAD54L promoted cell viability and attenuated apoptosis in IL-1ß-induced human chondrocytes. A lower Osteoarthritis Research Society International score and a remarkable alleviation of chondrocyte disordering and infiltration of inflammatory cells were found in cartilage tissues of OA rats after overexpressing RAD54L. The inflammatory response induced by OA was decreased by RAD54L overexpression in vitro and in vivo. In addition, RAD54L overexpression decreased the relative expression level of HIF-1α and VEGF. Overexpression of RAD54L could attenuate OA by suppressing the HIF-1α/VEGF signaling pathway, indicating that RAD54L may be a potential treatment target for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Interleucina-1beta/metabolismo , Transdução de Sinais , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Apoptose , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo
5.
Biochem Biophys Res Commun ; 710: 149885, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588612

RESUMO

Oxidative stress is a key factor in the disruption of cartilage homeostasis during the development of osteoarthritis (OA). Organic selenium (Se)-containing compounds such as diselenides have excellent antioxidant activity and may prevent related diseases. We aimed to examine the benefits of the synthetic small molecule diphenyl diselenide (DPDSe) in OA models in vitro and in vivo. Our findings showed that DPDSe could maintain extracellular matrix (ECM) homeostasis and inhibit reactive oxygen species (ROS) production in IL-1ß-treated chondrocytes. In a destabilization of the medial meniscus (DMM)-induced OA mouse model, intra-articular administration of DPDSe alleviated joint degeneration, as evidenced by a decrease in the OARSI score and the restoration of collagen II (COL2) and MMP-13 expression in cartilage tissues. We confirmed that DDS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in IL-1ß-treated chondrocytes, and its chondroprotective effects were significantly counteracted when Nrf2 signaling was blocked by the inhibitor ML385 or by siRNA-mediated Nrf2 knockdown. The relatively strong performance of DPDSe makes it an ideal candidate for further trials as a disease-modifying OA drug (DMOAD).


Assuntos
Derivados de Benzeno , Compostos Organosselênicos , Osteoartrite , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Condrócitos/metabolismo , Interleucina-1beta/metabolismo
6.
PLoS One ; 19(4): e0300331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635511

RESUMO

The performance of apparently biocompatible implanted bovine bone grafts may be compromised by unresolved chronic inflammation, and poor graft incorporation leading to implant failure. Monitoring the intensity and duration of the inflammatory response caused by implanted bone grafts is crucial. In this study, the ability of demineralized (DMB) and decellularized (DCC) bovine bone substitutes in initiating inflammatory responses to peripheral blood monocyte-derived macrophages (PBMMs) was investigated. The response of PBMMs to bone substitutes was evaluated by using both direct and indirect cell culture, reactive oxygen species (ROS) generation, apoptosis, immunophenotyping, and cytokine production. Analysis of DMB and DCC substitutes using scanning electron microscope (SEM) showed a roughened surface with a size ranging between 500 and 750 µm. PBMMs treated with DMB demonstrated cell aggregation and clumping mimicking lipopolysaccharide (LPS) treated PBMMs and a higher proliferation ability (166.93%) compared to control (100%) and DCC treatments (115.64%; p<0.001) at 24h. This was associated with a significantly increased production of intracellular ROS in PBMMs exposed to DMB substitutes than control (3158.5 vs 1715.5; p<0.001) and DCC treatment (2117.5). The bone substitute exposure also caused an increase in percentage apoptosis which was significantly (p<0.0001) higher in both DMB (27.85) and DCC (29.2) treatment than control (19.383). A significant increase in proinflammatory cytokine expression (TNF-α: 3.4 folds; p<0.05) was observed in DMB substitute-treated PBMMs compared to control. Notably, IL-1ß mRNA was significantly higher in DMB (21.75 folds; p<0.0001) than control and DCC (5.01 folds). In contrast, DCC substitutes exhibited immunoregulatory effects on PBMMs, as indicated by the expression for CD86, CD206, and HLDR surface markers mimicking IL-4 treatments. In conclusion, DMB excites a higher immunological response compared to DCC suggesting decellularization process of tissues dampen down inflammatory reactions when exposed to PBMM.


Assuntos
Substitutos Ósseos , Humanos , Animais , Bovinos , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo
7.
Sci Signal ; 17(830): eade4335, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564492

RESUMO

Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1). FTH-ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1ß in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH-ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1ß secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1ß production in liver slices from wild-type mice but not in those from Icam1-/- or Nlrp3-/- mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.


Assuntos
Inflamassomos , Hepatopatias , Ratos , Camundongos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Estreladas do Fígado/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Interleucina-1beta/metabolismo , Inflamação/genética , Inflamação/metabolismo
8.
Methods Mol Biol ; 2782: 137-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622398

RESUMO

Leishmania, an intra-macrophage kinetoplastid parasite, modulates a vast array of defensive mechanisms of the host macrophages to create a comfortable environment for their survival. When the host encounters intracellular pathogens, a multimeric protein complex called NLRP3 inflammasome gets turned on, leading to caspase-1 activation-mediated maturation of IL-1ß from its pro-form. However, Leishmania often manages to neutralize inflammasome activation by manipulating negative regulatory molecules of the host itself. Exhaustion of NLRP3 and pro-IL-1ß result from decreased NF-κB activity in infection, which was attributed to increased expression of A20, a negative regulator of NF-κB signalling. Moreover, reactive oxygen species, another key requirement for inflammasome activation, are inhibited by mitochondrial uncoupling protein 2 (UCP2) which is upregulated by Leishmania. Inflammasome activation is a complex event and procedures involved in monitoring inflammasome activation need to be accurate and error-free. In this chapter, we summarize the protocol that includes various experimental procedures required for the determination of the status of inflammasomes in Leishmania-infected macrophages.


Assuntos
Inflamassomos , Leishmania , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Leishmania/metabolismo , NF-kappa B/metabolismo , Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 1/metabolismo
9.
Medicine (Baltimore) ; 103(14): e37589, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579090

RESUMO

BACKGROUND: Chronic gouty arthritis, a prevalent metabolic disorder, has prompted interest in the role of diet and lifestyle in its management. This study examines alkaline water as a non-pharmacological adjunct to traditional medicine, hypothesizing its positive effects on uric acid levels and gout symptoms. METHODS: In this research, 400 chronic arthritis patients from Guangdong Hydropower Hospital (September 2021-September 2023) were randomly assigned to groups receiving varying concentrations of alkaline water alongside conventional Western medicine, or Western medicine alone. A 1-year follow-up involved assessments using visual analogue scales, joint swelling scores, functional assessment scales, and biochemical markers (serum uric acid, creatinine, urea nitrogen) for comprehensive evaluation. RESULTS: Pain relief: High-concentration alkaline water significantly reduced VAS pain scores posttreatment (P < .05). Joint swelling: Greatest improvement observed in high-concentration group (P < .001). Daily activity capability: Notable enhancements in daily activity scores in experimental groups (P < .05). Range of joint motion: All groups showed significant improvement posttreatment (P < .05). Inflammatory markers: Experimental groups experienced a notable decrease in C-reactive protein, especially in the low concentration group (P < .001). Erythrocyte sedimentation rate decreases were marginal and not statistically significant (P > .05). Interleukin-1ß and tumor necrosis factor-α levels significantly decreased, particularly in the low concentration group. Serum uric acid levels: Significant reduction in serum uric acid observed in all alkaline water groups (P < .05), contrasting with the control group. CONCLUSION: Alkaline water, particularly at high concentrations, effectively alleviated pain, reduced joint swelling, enhanced daily activities, and improved joint motion in chronic gouty arthritis treatment. It significantly reduced key inflammatory markers (C-reactive protein, interleukin-1ß, tumor necrosis factor-α) and serum uric acid levels, suggesting its potential as a valuable adjunct in gout management. The limited impact on erythrocyte sedimentation rate warrants further investigation.


Assuntos
Artrite Gotosa , Gota , Humanos , Artrite Gotosa/tratamento farmacológico , Ácido Úrico , Fator de Necrose Tumoral alfa/metabolismo , Proteína C-Reativa , Interleucina-1beta/metabolismo , Gota/tratamento farmacológico , Dor , Água
10.
Part Fibre Toxicol ; 21(1): 16, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509617

RESUMO

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Assuntos
Catepsina B , Lipopolissacarídeos , Masculino , Humanos , Camundongos , Animais , Catepsina B/metabolismo , Catepsina B/farmacologia , Lipopolissacarídeos/farmacologia , Ensaios de Triagem em Larga Escala , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos , Citocinas/metabolismo , Interleucina-1beta/metabolismo
11.
Sci Rep ; 14(1): 5078, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429394

RESUMO

Ferroptosis is a recently identified form of programmed cell death that plays an important role in the pathophysiological process of osteoarthritis (OA). Herein, we investigated the protective effect of moderate mechanical stress on chondrocyte ferroptosis and further revealed the internal molecular mechanism. Intra-articular injection of sodium iodoacetate (MIA) was conducted to induce the rat model of OA in vivo, meanwhile, interleukin-1 beta (IL-1ß) was treated to chondrocytes to induce the OA cell model in vitro. The OA phenotype was analyzed by histology and microcomputed tomography, the ferroptosis was analyzed by transmission electron microscope and immunofluorescence. The expression of ferroptosis and cartilage metabolism-related factors was analyzed by immunohistochemical and Western blot. Animal experiments revealed that moderate-intensity treadmill exercise could effectively reduce chondrocyte ferroptosis and cartilage matrix degradation in MIA-induced OA rats. Cell experiments showed that 4-h cyclic tensile strain intervention could activate Nrf2 and inhibit the NF-κB signaling pathway, increase the expression of Col2a1, GPX4, and SLC7A11, decrease the expression of MMP13 and P53, thereby restraining IL-1ß-induced chondrocyte ferroptosis and degeneration. Inhibition of NF-κB signaling pathway relieved the chondrocyte ferroptosis and degeneration. Meanwhile, overexpression of NF-κB by recombinant lentivirus reversed the positive effect of CTS on chondrocytes. Moderate mechanical stress could activate the Nrf2 antioxidant system, inhibit the NF-κB p65 signaling pathway, and inhibit chondrocyte ferroptosis and cartilage matrix degradation by regulating P53, SLC7A11, and GPX4.


Assuntos
Ferroptose , Osteoartrite , Estresse Mecânico , Animais , Ratos , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Microtomografia por Raio-X , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/fisiologia
12.
Neuroreport ; 35(6): 352-360, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526937

RESUMO

An imbalance of immune/inflammatory reactions aggravates secondary brain injury after traumatic brain injury (TBI) and can deteriorate clinical prognosis. So far, not enough therapeutic avenues have been found to prevent such an imbalance in the clinical setting. Progesterone has been shown to regulate immune/inflammatory reactions in many diseases and conveys a potential protective role in TBI. This study was designed to investigate the neuroprotective effects of progesterone associated with immune/inflammatory modulation in experimental TBI. A TBI model in adult male C57BL/6J mice was created using a controlled contusion instrument. After injury, the mice received consecutive progesterone therapy (8 mg/kg per day, i.p.) until euthanized. Neurological deficits were assessed via Morris water maze test. Brain edema was measured via the dry-wet weight method. Immunohistochemical staining and flow cytometry were used to examine the numbers of immune/inflammatory cells, including IBA-1 + microglia, myeloperoxidase + neutrophils, and regulatory T cells (Tregs). ELISA was used to detect the concentrations of IL-1ß, TNF-α, IL-10, and TGF-ß. Our data showed that progesterone therapy significantly improved neurological deficits and brain edema in experimental TBI, remarkably increased regulatory T cell numbers in the spleen, and dramatically reduced the activation and infiltration of inflammatory cells (microglia and neutrophils) in injured brain tissue. In addition, progesterone therapy decreased the expression of the pro-inflammatory cytokines IL-1ß and TNF-α but increased the expression of the anti-inflammatory cytokine IL-10 after TBI. These findings suggest that progesterone administration could be used to regulate immune/inflammatory reactions and improve outcomes in TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Camundongos , Masculino , Animais , Interleucina-10 , Progesterona/farmacologia , Neuroproteção , Fator de Necrose Tumoral alfa/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo
13.
Dis Markers ; 2024: 9936295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549717

RESUMO

Objective: Osteoarthritis (OA) is a commonly known prevalent joint disease, with limited therapeutic methods. This study aimed to investigate the expression of plasma microRNA-320c (miR-320c) in patients with knee OA and to explore the clinical value and potential mechanism of miR-320c in knee OA. Methods: Forty knee OA patients and 20 healthy controls were enrolled. The levels of plasma miR-320c and plasma inflammatory cytokines were measured by real-time PCR or ELISA. Correlations of Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores and cytokine levels with the miR-320c expression level were evaluated by Pearson correlation analysis. Then, a receiver operating characteristic (ROC) curve was drawn to analyse the diagnostic value of miR-320c in OA. Finally, the interaction of miR-320c and cAMP responsive element binding protein 5 (CREB5) was determined using a luciferase reporter assay, and the effect of CREB5 on the cAMP pathway was assessed. Results: The expression level of plasma miR-320c was significantly higher in OA patients than in healthy controls (p < 0.05). The increased plasma miR-320c level was positively correlated with the WOMAC score (r = 0.796, p < 0.001) and the plasma interleukin (IL)-1ß (r = 0.814, p < 0.001) and IL-6 (r = 0.695, p < 0.001) levels in patients with OA. ROC curve analysis demonstrated the relatively high diagnostic accuracy of plasma miR-320c for OA. Furthermore, the luciferase reporter assay results showed that miR-320c regulates CREB5 expression by binding to the CREB5 3'-untranslated region. Moreover, suppression of CREB5 significantly reduced the expression levels of c-fos and c-jun. Conclusion: Our results indicate that plasma miR-320c may serve as a potential novel predictor of the severity of knee OA and that miR-320c may play an important role in the pathogenesis of OA through inhibiting the cAMP pathway by targeting CREB5.


Assuntos
MicroRNAs , Osteoartrite do Joelho , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Condrócitos/metabolismo , Biomarcadores/metabolismo , Luciferases/metabolismo , Interleucina-1beta/metabolismo , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo
14.
Infect Immun ; 92(4): e0050523, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38477589

RESUMO

The inflammasome is a pivotal component of the innate immune system, acting as a multiprotein complex that plays an essential role in detecting and responding to microbial infections. Salmonella Enteritidis have evolved multiple mechanisms to regulate inflammasome activation and evade host immune system clearance. Through screening S. Enteritidis C50336ΔfliC transposon mutant library, we found that the insertion mutant of dinJ increased inflammasome activation. In this study, we demonstrated the genetic connection between the antitoxin DinJ and the toxin YafQ in S. Enteritidis, confirming their co-transcription. The deletion mutant ΔfliCΔdinJ increased cell death and IL-1ß secretion in J774A.1 cells. Western blotting analysis further showed elevated cleaved Caspase-1 product (p10 subunits) and IL-1ß secretion in cells infected with ΔfliCΔdinJ compared to cells infected with ΔfliC. DinJ was found to inhibit canonical inflammasome activation using primary bone marrow-derived macrophages (BMDMs) from Casp-/- C57BL/6 mice. Furthermore, DinJ specifically inhibited NLRP3 inflammasome activation, as demonstrated in BMDMs from Nlrp3-/- and Nlrc4-/- mice. Fluorescence resonance energy transfer (FRET) experiments confirmed the translocation of DinJ into host cells during infection. Finally, we revealed that DinJ could inhibit the secretion of IL-1ß and IL-18 in vivo, contributing to S. Enteritidis evading host immune clearance. In summary, our findings provide insights into the role of DinJ in modulating the inflammasome response during S. Enteritidis infection, highlighting its impact on inhibiting inflammasome activation and immune evasion.


Assuntos
Antitoxinas , Inflamassomos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Salmonella enteritidis , Camundongos Endogâmicos C57BL , Macrófagos , Caspase 1/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
15.
Cytokine ; 178: 156568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471420

RESUMO

BACKGROUND: Laryngopharyngeal reflux (LPR) is one of the most common disorders in otorhinolaryngology, affecting up to 10% of outpatients visiting otolaryngology departments. In addition, 50% of hoarseness cases are related to LPR. Pepsin reflux-induced aseptic inflammation is a major trigger of LPR; however, the underlying mechanisms are unclear. The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has become an important bridge between stimulation and sterile inflammation and is activated by intracellular reactive oxygen species (ROS) in response to danger signals, leading to an inflammatory cascade. In this study, we aimed to determine whether pepsin causes LPR-associated inflammatory injury via mediating inflammasome activation and explore the potential mechanism. METHODS: We evaluated NLRP3 inflammasome expression and ROS in the laryngeal mucosa using immunofluorescence and immunohistochemistry. Laryngeal epithelial cells were exposed to pepsin and analyzed using flow cytometry, western blotting, and real-time quantitative PCR to determine ROS, NLRP3, and pro-inflammatorycytokine levels. RESULTS: Pepsin expression was positively correlated with ROS as well as caspase-1 and IL-1ß levels in laryngeal tissues. Intracellular ROS levels were elevated by increased pepsin concentrations, which were attenuated by apocynin (APO)-a ROS inhibitor-in vitro. Furthermore, pepsin significantly induced the mRNA and protein expression of thioredoxin-interacting protein, NLRP3, caspase-1, and IL-1ß in a dose-dependent manner. APO and the NLRP3 inhibitor, MCC950, inhibited NLRP3 inflammasome formation and suppressed laryngeal epithelial cell damage. CONCLUSION: Our findings verified that pepsin could regulate the NLRP3/IL-1ß signaling pathway through ROS activation and further induce inflammatory injury in LPR. Targeting the ROS/NLRP3 inflammasome signaling pathway may help treat patients with LPR disease.


Assuntos
Refluxo Laringofaríngeo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pepsina A/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
16.
Epilepsy Res ; 201: 107338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447234

RESUMO

BACKGROUND: The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammatory pathway is implicated in the development of epilepsy and can be suppressed by the activation of the silent information regulator 1 (SIRT1). However, the expression and correlation of the NLRP3 pathway and SIRT1 in drug-resistant epilepsy (DRE) remain unknown. METHODS: This study evaluated the histopathology of the cerebral cortex from nine patients with DRE and eight patients with cavernous haemangioma undergoing surgical treatment. It analysed the expression of the NLRP3, interleukin-1ß (IL-1ß), caspase-1 and SIRT1 using immunohistochemistry. Additionally, the contents of NLRP3, caspase-1, IL-1ß and SIRT1 in the serum samples of the included study participants were determined using ELISA method. The correlation between the NLRP3 pathway and the SIRT1 was assessed using Spearman's correlation analysis. RESULTS: The expression of NLRP3, caspase-1 and IL-1ß in the cerebral cortex of patients with DRE was elevated, with the NLRP3 expression being negatively correlated with the SIRT1 expression. Furthermore, IL-1ß in serum was upregulated in patients with DRE. The correlation between the content of serum SIRT1 and NLRP3, caspase-1 and IL-1ß in patients with DRE was not significant. Notably, serum caspase-1 levels were obviously higher in patients with bilateral hippocampal sclerosis than in patients with unilateral hippocampal sclerosis. CONCLUSIONS: The current results indicate that the expression of the NLRP3/caspase-1/IL-1ß pathway is significantly upregulated in patients with DRE and that it is partially correlated with the SIRT1 expression. This study is important for understanding the pathophysiology of DRE and developing new treatment strategies for it.


Assuntos
Esclerose Hipocampal , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Domínio Pirina , Sirtuína 1/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
17.
J Transl Med ; 22(1): 286, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493143

RESUMO

BACKGROUND: Osteoarthritis (OA) is a degenerative disease characterized by chronic inflammation of the joint. As the disease progresses, patients will gradually develop symptoms such as pain, physical limitations and even disability. The risk factors for OA include genetics, gender, trauma, obesity, and age. Unfortunately, due to limited understanding of its pathological mechanism, there are currently no effective drugs or treatments to suspend the progression of osteoarthritis. In recent years, some studies found that low-intensity pulsed ultrasound (LIPUS) may have a positive effect on osteoarthritis. Nonetheless, the exact mechanism by which LIPUS affects osteoarthritis remains unknown. It is valuable to explore the specific mechanism of LIPUS in the treatment of OA. METHODS: In this study, we validated the potential therapeutic effect of LIPUS on osteoarthritis by regulating the YAP-RIPK1-NF-κB axis at both cellular and animal levels. To verify the effect of YAP on OA, the expression of YAP was knocked down or overexpressed by siRNA and plasmid in chondrocytes and adeno-associated virus was injected into the knee joint of rats. The effect of LIPUS was investigated in inflammation chondrocytes induced by IL-1ß and in the post-traumatic OA model. RESULTS: In this study, we observed that YAP plays an important role in the development of osteoarthritis and knocking down of YAP significantly inhibited the inflammation and alleviated cartilage degeneration. We also demonstrated that the expression of YAP was increased in osteoarthritis chondrocytes and YAP could interact with RIPK1, thereby regulating the NF-κB signal pathway and influencing inflammation. Moreover, we also discovered that LIPUS decreased the expression of YAP by restoring the impaired autophagy capacity and inhibiting the binding between YAP and RIPK1, thereby delaying the progression of osteoarthritis. Animal experiment showed that LIPUS could inhibit cartilage degeneration and alleviate the progression of OA. CONCLUSIONS: These results showed that LIPUS is effective in inhibiting inflammation and cartilage degeneration and alleviate the progression of OA. As a result, our results provide new insight of mechanism by which LIPUS delays the development of osteoarthritis, offering a novel therapeutic regimen for osteoarthritis.


Assuntos
NF-kappa B , Osteoartrite , Humanos , Ratos , Animais , NF-kappa B/metabolismo , Osteoartrite/terapia , Osteoartrite/patologia , Ondas Ultrassônicas , Inflamação/patologia , Autofagia , Condrócitos , Interleucina-1beta/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
18.
Arthritis Res Ther ; 26(1): 66, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468277

RESUMO

BACKGROUND: CRISPR-Cas9-based genome engineering represents a powerful therapeutic tool for cartilage tissue engineering and for understanding molecular pathways driving cartilage diseases. However, primary chondrocytes are difficult to transfect and rapidly dedifferentiate during monolayer (2D) cell culture, making the lengthy expansion of a single-cell-derived edited clonal population not feasible. For this reason, functional genetics studies focused on cartilage and rheumatic diseases have long been carried out in cellular models that poorly recapitulate the native molecular properties of human cartilaginous tissue (e.g., cell lines, induced pluripotent stem cells). Here, we set out to develop a non-viral CRISPR-Cas9, bulk-gene editing method suitable for chondrocyte populations from different cartilaginous sources. METHODS: We screened electroporation and lipid nanoparticles for ribonucleoprotein (RNP) delivery in primary polydactyly chondrocytes, and optimized RNP reagents assembly. We knocked out RELA (also known as p65), a subunit of the nuclear factor kappa B (NF-κB), in polydactyly chondrocytes and further characterized knockout (KO) cells with RT-qPCR and Western Blot. We tested RELA KO in chondrocytes from diverse cartilaginous sources and characterized their phenotype with RT-qPCR. We examined the chondrogenic potential of wild-type (WT) and KO cell pellets in presence and absence of interleukin-1ß (IL-1ß). RESULTS: We established electroporation as the optimal transfection technique for chondrocytes enhancing transfection and editing efficiency, while preserving high cell viability. We knocked out RELA with an unprecedented efficiency of ~90%, confirming lower inflammatory pathways activation upon IL-1ß stimulation compared to unedited cells. Our protocol could be easily transferred to primary human chondrocytes harvested from osteoarthritis (OA) patients, human FE002 chondroprogenitor cells, bovine chondrocytes, and a human chondrocyte cell line, achieving comparable mean RELA KO editing levels using the same protocol. All KO pellets from primary human chondrocytes retained chondrogenic ability equivalent to WT cells, and additionally displayed enhanced matrix retention under inflamed conditions. CONCLUSIONS: We showcased the applicability of our bulk gene editing method to develop effective autologous and allogeneic off-the-shelf gene therapies strategies and to enable functional genetics studies in human chondrocytes to unravel molecular mechanisms of cartilage diseases.


Assuntos
Doenças das Cartilagens , Polidactilia , Humanos , Animais , Bovinos , Condrócitos/metabolismo , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Interleucina-1beta/metabolismo , Doenças das Cartilagens/metabolismo , Polidactilia/metabolismo
19.
J Orthop Surg Res ; 19(1): 178, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468339

RESUMO

BACKGROUND: Osteoarthritis (OA) is a common degenerative joint disease characterized by persistent articular cartilage degeneration and synovitis. Oxymatrine (OMT) is a quinzolazine alkaloid extracted from the traditional Chinese medicine, matrine, and possesses anti-inflammatory properties that may help regulate the pathogenesis of OA; however, its mechanism has not been elucidated. This study aimed to investigate the effects of OMT on interleukin-1ß (IL-1ß)-induced damage and the potential mechanisms of action. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. Toluidine blue and Collagen II immunofluorescence staining were used to determine the purity of the chondrocytes. Thereafter, the chondrocytes were subjected to IL-1ß stimulation, both in the presence and absence of OMT, or the autophagy inhibitor 3-methyladenine (3-MA). Cell viability was assessed using the MTT assay and SYTOX Green staining. Additionally, flow cytometry was used to determine cell apoptosis rate and reactive oxygen species (ROS) levels. The protein levels of AKT, mTOR, LC3, P62, matrix metalloproteinase-13, and collagen II were quantitatively analyzed using western blotting. Immunofluorescence was used to assess LC3 expression. RESULTS: OMT alleviated IL-1ß-induced damage in chondrocytes, by increasing the survival rate, reducing the apoptosis rates of chondrocytes, and preventing the degradation of the cartilage matrix. In addition, OMT decreased the ROS levels and inhibited the AKT/mTOR signaling pathway while promoting autophagy in IL-1ß treated chondrocytes. However, the effectiveness of OMT in improving chondrocyte viability under IL-1ß treatment was limited when autophagy was inhibited by 3-MA. CONCLUSIONS: OMT decreases oxidative stress and inhibits the AKT/mTOR signaling pathway to enhance autophagy, thus inhibiting IL-1ß-induced damage. Therefore, OMT may be a novel and effective therapeutic agent for the clinical treatment of OA.


Assuntos
Alcaloides , Cartilagem Articular , Matrinas , Osteoartrite , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/toxicidade , Interleucina-1beta/metabolismo , Osteoartrite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Cartilagem Articular/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/metabolismo , Autofagia , Colágeno/metabolismo , Apoptose
20.
Am J Reprod Immunol ; 91(3): e13833, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467595

RESUMO

BACKGROUND: Endometritis is an inflammatory reaction of the lining of uterus, leading to the occurrence of infertility. Platelet rich plasma (PRP) has been proven to exhibit extremely effective for the treatment of endometrium-associated infertility, but the mechanism of its prevention for endometritis remains unclear. OBJECTIVE: The present study aimed to investigate the protective effect of PRP against endometritis induced by lipopolysaccharide (LPS) and elucidate the mechanism underlying these effects. METHODS: Mouse model of endometritis was established by intrauterine perfusion of LPS. PRP intrauterine infusion was administered at 24 h after LPS induction. After another 24 h, the uterine tissues were harvested to observe histopathological changes, production of proinflammatory cytokines, variation of the Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathways, and validated the anti-inflammatory effect of PRP. The myeloperoxidase (MPO) activity and concentration of nitric oxide (NO) were determined using assay kit. Proinflammatory chemokines (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6)) were measured by ELISA and Real-Time PCR. The activity of TLR4/NF-κB pathway in uterine tissues was measured by Western blotting. RESULTS: Hematoxylin-eosin staining (H&E) appeared that PRP remarkably relieved the impairment of uterine tissues. Detection of MPO activity and concentration of NO revealed that PRP treatment distinctly mitigated infiltration of inflammatory cells in mice with endometritis induced by LPS. PRP treatment significantly affected the expression of TNF-α, IL-1ß, and IL-6. PRP was also found to suppress LPS-induced activation of TLR4/NF-κB pathway. CONCLUSION: PRP effectively alleviates LPS-induced endometritis via restraining the signal pathway of TLR4/NF-κB. These findings provide a solid foundation for PRP as a potential therapeutic agent for endometritis.


Assuntos
Endometrite , Infertilidade , Plasma Rico em Plaquetas , Humanos , Feminino , Animais , Camundongos , NF-kappa B/metabolismo , Endometrite/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6 , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Interleucina-1beta/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Plasma Rico em Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...